VGN Dragonfly F1 Pro Max Review (2024)

Sensor and Performance

The VGN Dragonfly F1 Pro Max is equipped with the PixArt PAW3395. According to specifications, the 3395 is capable of up to 26,000 CPI, as well as a maximum tracking speed of 650 IPS, which equals 16.51 m/s. Out of the box, four pre-defined CPI steps are available: 400, 800, 1600, and 3200.

All testing was done on the latest firmware (V0110/V0107). As such, results obtained on earlier firmware versions may differ from those presented hereafter.

CPI Accuracy

"CPI" (short for counts per inch) describes the number of counts registered by the mouse if it is moved exactly an inch. There are several factors (firmware, mounting height of the sensor not meeting specifications, mouse feet thickness, mousing surface, among others) which may contribute to nominal CPI not matching actual CPI. It is impossible to always achieve a perfect match, but ideally, nominal and actual CPI should differ as little as possible. In this test, I'm determining whether this is the case or not. However, please keep in mind that said variance will still differ from unit to unit, so your mileage may vary.

VGN Dragonfly F1 Pro Max Review (1)

I've restricted my testing to the four most common CPI steps, which are 400, 800, 1600, and 3200. As you can see, there is no deviation at all, which is a perfect result.

Motion Delay

"Motion delay" encompasses all kinds of sensor lag. Any further sources of input delay will not be recorded in this test. The main thing I'll be looking for in this test is sensor smoothing, which describes an averaging of motion data across several capture frames in order to reduce jitter at higher CPI values, increasing motion delay along with it. The goal here is to have as little smoothing as possible. As there is no way to accurately measure motion delay absolutely without special equipment, it is done by comparison with a control subject that has been determined to have consistent and low motion delay. In this case, the control subject is a Logitech G403, whose PMW3366 sensor has no visible smoothing across the entire CPI range. Note that the G403 is moved first and thus receives a slight head start.

Wired testing

First, I'm looking at two xCounts plots—generated at 1600 and 26,000 CPI—to quickly gauge whether there is any smoothing, which would be indicated by any visible "kinks." Neither plot shows any kinks, strongly suggesting there not being any smoothing across the entire CPI range.

The Dragonfly F1 Pro Max also allows enabling MotionSync, which effectively synchronizes SPI reads with USB polls, resulting in very low SPI timing jitter as seen above.


In order to determine motion delay, I'm looking at xSum plots generated at 1600 and 26,000 CPI, both without (first row) and with (second row) MotionSync. The line further to the left denotes the sensor with less motion delay. Without MotionSync, there is no motion delay differential at 1600 and 26,000 CPI. With MotionSync, a motion delay differential of roughly 0.5 ms is added.

Wireless testing

Unlike in wired mode, which defaults to corded mode, the sensor run mode can be modified in wireless mode. LP mode (first plot) displays slightly higher SPI timing jitter than HP mode (second plot).

Upon enabling MotionSync, SPI timing is tightened to a similar degree in both instances, although LP mode displays a reproducible, non-polling related outlier at the onset of motion, which is not present in HP mode.


1600 CPI both without (first row) and with (second row) MotionSync is tested. Without MotionSync, a motion delay differential of roughly 0.75 ms can be measured at 1600 CPI, both in LP mode (first plot) and HP mode (second plot). With MotionSync, a motion delay differential of roughly 0.5 ms is added once again.

Speed-related Accuracy Variance (SRAV)

What people typically mean when they talk about "acceleration" is speed-related accuracy variance (SRAV for short). It's not about the mouse having a set amount of inherent positive or negative acceleration, but about the cursor not traveling the same distance if the mouse is moved the same physical distance at different speeds. The easiest way to test this is by comparison with a control subject that is known to have very low SRAV, which in this case is the G403. As you can see from the plot, no displacement between the two cursor paths can be observed, which confirms that SRAV is very low.

Perfect Control Speed

Perfect Control Speed (or PCS for short) is the maximum speed up to which the mouse and its sensor can be moved without the sensor malfunctioning in any way. I've only managed to hit a measly 5 m/s, which is within the proclaimed PCS range and results in no observable sign of the sensor malfunctioning.

Polling Rate Stability

Considering the Dragonfly F1 Pro Max is usable as a regular wired mouse as well, I'll be testing polling rate stability for both wired and wireless use.

Wired testing


All of the available polling rates (125, 250, 500, and 1000 Hz) look nice and stable.

Wireless testing
For wired mice, polling rate stability merely concerns the wired connection between the mouse (SPI communication) and the USB. For wireless mice, another device that needs to be kept in sync between the first two is added to the mix: the wireless dongle/wireless receiver. I'm unable to measure all stages of the entire end-to-end signal chain individually, so testing polling-rate stability at the endpoint (the USB) has to suffice here.

First, I'm testing whether SPI, wireless, and USB communication are synchronized. Any of these being out of sync would be indicated by at least one 2 ms report, which would be the result of any desynchronization drift accumulated over time. I'm unable to detect any periodic off-period polls that would be indicative of a desynchronization drift.


Second, I'm testing the general polling-rate stability of the individual polling rates in wireless mode. Running the Dragonfly F1 Pro Max at a lower polling rate can have the benefit of extending battery life. With the exception of 1000 Hz, all polling rates display severe instability.

Paint Test

This test is used to indicate any potential issues with angle snapping (non-native straightening of linear motion) and jitter, along with any sensor lens rattle. As you can see, no issues with angle snapping can be observed. No jitter is visible at 1600 CPI. 26,000 CPI with ripple control disabled (second row) shows major jitter, which is only marginally lessened by enabling ripple control (third row). Lastly, there is no sensor lens movement.

Lift-off Distance

The Dragonfly F1 Pro Max offers two pre-defined LOD levels. At the "1 mm" setting, the sensor does not track at a height of 1 DVD (<1.2 mm). Using the "2 mm" setting, the sensor does track at a height of 1 DVD (1.2 mm<x<2.4 mm, with x being LOD height), but not at a height of 2 DVDs. Keep in mind that LOD may vary slightly depending on the mousing surface (pad) it is being used on.

Click Latency

VGN Dragonfly F1 Pro Max Review (30)

In most computer mice, debouncing is required to avoid double clicks, slam-clicks, or other unintended effects of switch bouncing. Debouncing typically adds a delay, which, along with any potential processing delay, shall be referred to as click latency. In order to measure click latency, the mouse has been interfaced with an NVIDIA LDAT (Latency Display Analysis Tool). Many thanks go to NVIDIA for providing an LDAT device. More specifically, the LDAT measures the time between the electrical activation of the left main button and the OS receiving the button-down message. Unless noted otherwise, the values presented in the graph refer to the lowest click latency possible on the mouse in question. If a comparison mouse is capable of both wired and wireless operation, only the result for wireless (2.4 GHz) operation will be listed.

In wired mode and using a debounce time of 0 ms, click latency has been measured to be roughly 1.5 ms, with standard deviation being 0.17 ms. In wired mode and using a debounce time of 1 ms, click latency has been measured to be roughly 2.5 ms, with standard deviation being 0.22 ms. In wireless mode and using a debounce time of 0 ms, click latency has been measured to be roughly 2.4 ms, with standard deviation being 0.24 ms. Lastly, in wireless mode and using a debounce time of 1 ms, click latency has been measured to be roughly 3.4 ms, with standard deviation being 0.20 ms. Scaling is linear.

The main button switches were measured to be running at 2.0 V. I'm not aware of the voltage specifications of the Kailh GM 8.0 (80 M) switches, but find this voltage to be rather low.

VGN Dragonfly F1 Pro Max Review (2024)

FAQs

Is VGN F1 good? ›

A great mouse for claw grip, and with a low enough profile for fingertip. The mouse isn't without some imperfections, of course. For example, he noted the weight balance, coating, and some button behavior are not completely tuned to the extent of top mice, but also nothing that would make one disregard the mouse.

What is the polling rate of the VGN Dragonfly F1 Pro? ›

VGN Dragonfly F1 Pro and F1 Pro Max feature VGN's self-developed SmartSpeed transmission technology. It enables a high-speed 4000Hz Polling rate ensuring quicker trigger response with ultra-low latency, stutter-free smooth connection, and improves the battery endurance as well.

What is the difference between F1 Pro and F1 Pro Max? ›

The base model F1 has got battery durability of over 40 hours, the F1 Pro lasts for about 65 hours and the Flagship F1 Pro Max has got a battery life of up to 130 hours of continuous usage.

Does the VGN Dragonfly F1 have Bluetooth? ›

Number of Buttons: 5. Package: Yes. Interface Type: USB. Type: Bluetooth Wireless.

What is the top rated F1 track? ›

1. Spa-Francorchamps, Belgium. The ultimate F1 circuit has to be the legendary Spa which has been an F1 staple for much of the sport's 70-year history.

Are VGN and VXE the same? ›

VXE is an off shoot of VGN and the VGN Hub software also works with the VXE mice. The switches in the R1 SE, R1, and R1 Pro are Hunao.

What is the biggest difference between Pro and Pro Max? ›

One of the main differentiators between the Pro and Pro Max is display size, quite obviously. The Pro Max's 6.7-inch panel gives it roughly 20% more screen estate than what the Pro's 6.1-inch unit does.

What is the battery difference between Pro and Pro Max? ›

Thanks to its physically larger battery—approximately 4323 mAh compared to the Pro's 3200 mAh—the Pro Max delivers significantly longer usage time on a single charge. Apple states up to 23 hours of video playback for the iPhone 14 Pro and up to 29 hours for the Pro Max.

What is the most prestigious Formula 1 race? ›

Fame. The Monaco Grand Prix is widely considered to be one of the most important and prestigious automobile races in the world alongside the Indianapolis 500 and the 24 Hours of Le Mans. These three races are considered to form a Triple Crown of the three most famous motor races in the world.

Is Zandvoort a good F1 track? ›

What's the circuit like? 'Really quick', 'pretty insane', 'crazy' and 'old-school' were words used by the current crop of F1 drivers when asked to describe the Zandvoort track that many of them tackled in their junior category days. We'd also add 'undulating' to that list.

Is Ferrari F1 team good? ›

As a constructor, Ferrari has achieved the following statistics: Constructors' Championship winning percentage: 24.2% Drivers' Championship winning percentage: 20.3%

Which F1 is good? ›

As a general guideline, an F1 score of 0.7 or higher is often considered good. But again, you need to consider the specific context. Some applications may necessitate a higher F1 score, especially if both precision and recall are critical.

Top Articles
Latest Posts
Recommended Articles
Article information

Author: Trent Wehner

Last Updated:

Views: 5934

Rating: 4.6 / 5 (56 voted)

Reviews: 87% of readers found this page helpful

Author information

Name: Trent Wehner

Birthday: 1993-03-14

Address: 872 Kevin Squares, New Codyville, AK 01785-0416

Phone: +18698800304764

Job: Senior Farming Developer

Hobby: Paintball, Calligraphy, Hunting, Flying disc, Lapidary, Rafting, Inline skating

Introduction: My name is Trent Wehner, I am a talented, brainy, zealous, light, funny, gleaming, attractive person who loves writing and wants to share my knowledge and understanding with you.